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Causality and probability 

 

1. Introduction 

In Physics 2. 3, 194b16 – 195a3, Aristotle famously distinguishes four types of causes 

(material, formal, efficient, and final). Many economists deal with material causes: with the 

ultimate constituents of the economy (economic agents, their preferences, their behavior and 

so on). Some of them are interested in formal causes (the norms, institutions, or systemic 

properties that appear to determine the behavior of economic agents at least partly), and 

some of them (e.g. economists of the Marxist type) in final causes (in certain higher purposes 

of economic development). But perhaps the majority of economists are concerned with 

efficient causes: with the causes of shortages of donated organs, of an increase in inflation, 

of global inequality and so on. 

When investigating efficient causes, economists stand in one of roughly two traditions: in the 

tradition of understanding efficient causes as raising the probability of their effects, or in the 

tradition of understanding them as causally dependent on an instrumental variable (or 

“instrument”), i.e. on a variable, on which not only the putative cause causally depends but 

also the putative effect (via the putative cause), and which doesn’t causally depend on the 

putative effect or any other variable on which the putative effect causally depends. While the 

first tradition goes back to Hume, the second tradition has its roots in some of the work of the 

early econometricians (Haavelmo, Simon). The second tradition is younger than the first; but 

unlike the first tradition, the second tradition is at least compatible with Aristotelian 

approaches to efficient causation: with approaches that involve firm ontological commitments 

to powers, tendencies, or capacities.1 

The present entry will be concerned with the first tradition almost exclusively (and only touch 

upon the second tradition in sections 6 and 7). It will briefly present and discuss the 

probability theories of causality of Suppes and Granger (sections 2 and 3) and introduce 

Zellner’s idea of using causal laws to decide about the relevance of the variables and lags to 

be included in a model representing relations of Granger causality (section 4). It will then 

present and discuss causal Bayes nets theory (section 5) and emphasize that knowledge of 

causes that raise the probability of their effects can be employed for purposes of prediction, 

but less so for purposes of policy analysis (section 6). It will finally mention a number of 

																																																								
1  Hoover (2001, p. 100), for instance, stands in the second tradition and characterizes his 
“structural account” of causality as “not inconsistent” with Cartwright’s account of causes as 
capacities. Cartwright is sympathetic to probability theories of causality, but holds that (high) 
conditional probabilities (or regularities) only manifest “nomological machines”, where a nomological 
machine is “a fixed (enough) arrangement of components, or factors, with stable (enough) capacities 
that in the right sort of stable (enough) environment, give rise to the kind of regular behavior that we 
represent in our scientific laws” (Cartwright, 1999, p. 50). 
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problems that are potentially inherent to attempts to infer causality in the sense of the second 

tradition from probabilities (section 7). In the remainder, ‘causation’ is taken to be 

synonymous with ‘efficient causation’. 

 

2. Suppes on genuine causation 

While Hume required constant conjunction of cause and effect, probability approaches to 

causality are content to understand causes as raising the probability of their effects. They 

say that X = x causes Y = y if the conditional probability of Y = y given X = x is greater than 

the unconditional probability of Y = y, formally: P(Y = y⎥X = x) > P(Y = y), where X, Y … are 

random variables, i.e. functions from a sample or state space to a set into a range of values, 

where lower-case letters x, y … denote the values that X, Y … can take, and where P is a 

probability measure over the power set of that sample space, i.e. a function from that power 

set into the set of real numbers such that the Kolmogorov axioms are satisfied. 

The power set of the sample space may also be understood as the set of propositions saying 

that X = x, Y = y … Instead of propositions probability approaches to causality usually speak 

of events: of the event A of X attaining the value x, of the event B of Y attaining the value y 

… Suppes (1970, p. 12) interprets events as “instantaneous”, i.e. as occurring at a particular 

point in time; and he includes their time of occurrence in their formal characterization. So for 

him, ‘P(At)’ refers to the probability of the event A occurring at time t, where ‘A occurs at time 

t’ may mean as much as ‘X attains value x at time t’. Suppes (1970, p. 24) understands 

“cause” as “genuine cause” and defines “genuine cause” as “prima facie cause that is not 

spurious”. Thus, in order to understand his definition of “cause”, one needs to understand his 

definitions of “prima facie cause” and “spurious cause”. 

His definition of “prima facie cause” runs as follows (cf. Suppes, 1970, p. 12): 

(CPF) Bt' is a prima facie cause of At iff (i) t' < t, (ii) P(Bt') > 0 and (iii) P(At⎥ Bt') > P(At). 

Condition (iii) is the condition that causes increase the probability of their effect, and 

condition (ii) is needed because in the definition of conditional probability – P(At⎥ Bt') = 

P(At∧Bt')/P(Bt') – P(Bt') is the denominator, and because the denominator must not be equal 

to zero. Condition (i) implies that Bt' occurs earlier than At in time. Why does Suppes 

introduce that condition? One answer is that the relation ‘… increases the probability of …’ is 

symmetric because P(At⎥ Bt') > P(At) is equivalent to P(Bt'⎥ At) > P(Bt'), that the relation ‘… 

causes …’ is asymmetric, and that temporality is capable of turning the relation ‘… increases 

the probability of …’ into an asymmetric one. A second answer is that the Humean tradition, 

in which Suppes stands, holds that causality is intrinsically linked to temporality. 

His definition of “spurious cause” runs as follows (Suppes, 1970, pp. 21-2): 
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(CS) Bt' is a spurious cause of At iff Bt' is a prima facie cause of At, and there is a t'' < t' and 

an event Ct'' such that (i) Ct'' precedes Bt', (ii) P(Bt' ∧ Ct'') > 0 and (iii) P(At | Bt' ∧ Ct'') = 

P(At | Ct''). 

In other words: Bt' is a spurious cause of At iff Bt' is a prima facie cause of At, Ct'' precedes Bt', 

and Ct'' “screens off” At from Bt'. The notion of a spurious cause is needed to rule out cases in 

which prima facie causes do not represent genuine causes. A falling barometer, for instance, 

is a prima facie cause but not a genuine cause of an upcoming storm. Atmospheric pressure 

that precedes both the falling barometer and the upcoming storm screens off the upcoming 

storm from the falling barometer. 

(CS) is not the only definition of spurious causation that Suppes (1970, pp. 21-8) brings into 

play, and besides “prima facie cause” and “spurious cause” he defines “direct cause”, 

“sufficient cause” and “negative cause”. But a consideration of these definitions lies beyond 

the purposes of this entry. More immediately relevant to these purposes is a consideration of 

the problems that Suppes’ account of genuine causation faces, and that require specific 

solutions. These problems are of essentially two kinds; they both suggest that condition (iii) 

of (CPF) cannot be a necessary condition for At' causing Bt. 

The first problem is that it seems that Bt' can turn out to be a cause of At even though P(At⎥ 

Bt') < P(At). This problem can be illustrated by an example that Suppes (1970, p. 41) himself 

discusses. The example is that of a golfer with moderate skill who makes a shot that hits a 

limb of a tree close to the green and is thereby deflected directly into the hole, for a 

spectacular birdie. If At is the event of making a birdie and Bt' the earlier event of hitting the 

limb, we will say that Bt' causes At. But we will also say that P(At⎥ Bt') < P(At): that the 

probability of his making a birdie is low, and that the probability of his making a birdie, given 

that the ball hits the branch, is even lower. 

Does the example show that condition (iii) of (CPF) cannot qualify as a necessary condition 

for Bt' causing At? Suppes (1970, p. 42-3) argues for a negative answer. He argues that 

definition (CPF) can be defended if condition (iii) is relativized to background information Kt': 

(CPF') Bt' is a prima facie cause of At iff (i) Bt' ∧ Kt' precedes At, (ii) P(Bt' ∧ Kt') > 0 and (iii) P(At | 

Bt' ∧ Kt') > P(At | Kt'). 

Thus, if Kt' is e.g. the event of the shot being deflected in a specific angle, then the probability 

of the golfer’s making a birdie, given that the ball hits the branch and is deflected in a specific 

angle, might well be higher than the probability of his making a birdie. Suppes (1970, p. 42) 

adds that such relativization to background knowledge “can be useful, especially in 

theoretical contexts”. 
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The second problem is a fact about probabilities that is well known to statisticians and is 

often referred to as “Simpson’s paradox”. The fact is that any association between two 

variables which holds in a given population – P(Y = y| X = x) > P(Y = y), P(Y = y| X = x) < P(Y 

= y) or P(Y = y| X = x) = P(X = x)) – can be reversed in a subpopulation by finding a third 

variable that is correlated with both. Consider, for instance, the population of all Germans. 

For the population of all Germans, the conditional probability of getting a heart disease, given 

that an individual smokes, is higher than the unconditional probability of getting a heart 

disease. But for a subpopulation of Germans, in which all smokers exercise, the conditional 

probability of getting a heart disease, given that an individual smokes, is lower than the 

unconditional probability of getting a heart disease – at least if exercising is more effective at 

preventing heart disease that smoking at causing it. 

The fact itself is not a paradox. But Cartwright (1979, p. 421) points out that the paradox 

arises if we define causation of Y = y by X = x in terms of P(Y = y| X = x) > P(Y = y). If we 

define causation of Y = y by X = x in terms of P(Y = y| X = x) > P(Y = y), then causation of Y = 

y by X = x will depend on the population that we select when establishing P(Y = y| X = x) > 

P(Y = y). At the same time, we have the strong intuition that causation should be 

independent of specific populations. Cartwright (1979, p. 423) proposes to dissolve the 

paradox by conditioning Y = y on the set of “all alternative causal factors” of Y = y. 

Conditioning Y = y on such a set would render Suppes’ definition of genuine causation 

circular: causal vocabulary would show up in both the definiendum and the definiens. 

Interestingly, however, few philosophers hold that non-circularity is absolutely necessary.2 

 

3. Granger causality 

Perhaps the most influential explicit approach to causality in economics is that of Granger 

(1969; 1980). Like Suppes, Granger stands in the Humean tradition of understanding causes 

as raising the probability of their effect; and like Suppes, he believes that causality is 

intrinsically linked to temporality. But unlike Suppes, Granger (1980, p. 330, notation 

modified) defines ‘causation’ as a relation between variables: 

(GC) Xt Granger-causes Yt+1 if and only if P(Yt+1 = yt+1⎥ Ωt = ωt) ≠ P(Yt+1 = yt+1⎥ Ωt = ωt − Xt = 

xt), 

where Ωt is the infinite universe of variables dated t and earlier. The temporal ordering of Xt 

and Yt+1 guarantees that the relation between Xt and Yt+1 is asymmetric, and conditioning on 

																																																								
2  Woodward (2003, pp. 104-5), for instance, makes it clear that he is interested in the 
conceptual entanglement between causation and intervention, and not in any non-circular definition or 
reductive account of causality. Similarly, Hoover (2001, p. 42) claims that “[circularity] is less troubling 
epistemologically than it might seem to be ontologically”. 
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Ωt = ωt immunizes (GC) against circularity, spuriousness and the problem that causes might 

lower the probability of their effects. 

Spohn (2012, p. 442) points out that it is “literally meaningless and an abuse of language” to 

speak of variables themselves as causing other variables. ‘Xt causes Yt+1’ may either mean 

‘Xt = xt causes Yt+1 = yt+1’ or ‘Yt+1 causally depends on Xt’, where the causal dependence of 

Yt+1 on Xt is to be understood as a relation that obtains between Xt and Yt+1 if some event Xt = 

xt causes some event Yt+1 = yt+1.3 The context of time series econometrics suggests that (GC) 

is to be read in the first sense (cf. Spohn, 1983, pp. 85-6). The phrase ‘Xt Granger-causes 

Yt+1’ will be retained in the remainder because economists and econometricians have 

become accustomed to its use. It should be kept in mind, however, that the phrase is to be 

understood as synonymous with ‘Xt = xt causes Yt+1 = yt+1’. 

Granger (1980, p. 336) points out himself that (GC) is not “operational” because practical 

implementations cannot cope with an infinite number of variables with an infinite number of 

lags. But econometricians think that in order to test for “Granger causality”, they need to 

select only the relevant variables and only the relevant number of lags. Sims (1972), for 

instance, uses two variables (for money and GNP) and 4 future and 8 past lags to show that 

money Granger-causes GNP, and not the other way around. Later, as part of a general 

critique of the practice of using a priori theory to identify instrumental variables, Sims (1980a) 

advocates vector autoregression (VAR), which generalizes Granger causality to the 

multivariate case. The following two-equation model, for instance, is a VAR model for two 

variables and one lag: 

(1) yt+1 = α11yt + α12xt + ε1t+1 , 

(2) xt+1 = α21yt + α22xt + ε2t+1 , 

where the αij are parameters and the Εit+1 random error terms. Xt is said to Granger-cause 

Yt+1 if α12 ≠ 0; and Yt is said to Granger-cause Xt+1 if α21 ≠ 0. 

While definition (GC) avoids some of the problems that competing definitions face (circularity, 

spuriousness, the problem of causes that lower the probability of their effects), objections 

have been raised to implementations of (GC), i.e. to empirical procedures of testing for 

Granger causality. Hoover (1993, pp. 700-705) lists three problems that stand in the way of a 

temporal ordering of cause and effect in macroeconomics. The first problem is that in 

macroeconomics, it is difficult to rule out contemporaneous causality because data are 

																																																								
3  Instead of relations of ‘causal dependence’ theorists sometimes speak of relations of ‘type-
level causation’. Both ways of speaking refer to relations between variables (e.g. to the relation 
between income and consumption in general), and not to relations between events (i.e. not to relations 
like that between the event of US income attaining a specific value in Q4 2019 and the event of US 
consumption attaining a specific value in Q4 2019). 
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reported most often annually or quarterly. Hoover (1993, p. 702) cites Granger as suggesting 

that contemporaneous causality could be ruled out if data were sampled at fine enough 

intervals. But Hoover (1993, p. 702) responds that “such finer and finer intervals would 

exacerbate certain conceptual difficulties in the foundations of economics”; and he cites GNP 

as an example: “There are hours during the day when there is no production; does GNP fall 

to nought in those hours and grow astronomically when production resumes? Such wild 

fluctuations in GNP are economically meaningless.” 

The second problem is that there are hidden variables that (like expectations) cannot be 

included among the regressors in VAR models even though they are likely to be causally 

relevant. And the third problem is that economic theory (no matter which) provides 

reasonably persuasive accounts of steady-states, i.e. of hypothetical economic 

configurations that feature constant rates, quantities, and growth rates, and that are timeless 

in the sense that they result if time is allowed to run on to infinity. Hoover (1993, p. 705) 

admits that proponents of Granger causality might respond that “if macroeconomics cannot 

be beat into that mold [of temporal ordering], so much the worse for macroeconomics”. But 

Hoover (1993, p. 706) also argues that in macroeconomics, causal questions like ‘Will 

interest rates rise if the Fed sells $50M worth of treasury bonds?’ are sensible and well 

formulated, and that our concepts of causality need to be suitable for their formulation and 

interpretation. 

Another prominent objection that has been raised to Granger-causality tests says that it is 

impossible to select the relevant number of variables and lags without (explicit or implicit) 

reliance on economic theory or background knowledge. Sims’s subsequent work on the 

relation of Granger-causality between money and GNP indicates why this objection is 

important. When he included four variables (money, GNP, domestic prices and nominal 

interest rates) and twelve past lags in a VAR model, the above-mentioned result of money 

Granger-causing GNP no longer obtained.4 A relation of Granger-causality thus crucially 

depends on the number of variables and lags that are deemed to be relevant. And who is to 

decide about the relevance of variables and lags, and how? 

 

4. Zellner on causal laws 

Zellner (1979; 1988) can be read as responding to that question when defining ‘causality’ in 

terms of “predictability according to a law or set of laws”.5 He claims that laws may be 

deterministic or stochastic, qualitative or quantitative, micro or macro, resulting from 

																																																								
4  The new result stated that money accounted for only 4% of the variance in GNP (cf. Sims 
1980b). 
5  Zellner (1979, p. 12; 1988, p. 7) points out that he adopts that definition from Herbert Feigl. 
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controlled or uncontrolled experiments, involving simultaneous or non-simultaneous relations 

and so on, and that the only restrictions that need to be placed on laws relate to logical and 

mathematical consistency and to the ability to explain past data and experience and to 

predict future data and experience. While these restrictions are not “severe”, they imply that 

statistical regressions or autoregressions cannot qualify as laws because “they generally do 

not provide understanding and explanation and often involve confusing association or 

correlation with causality” (Zellner 1988, p. 9). Similarly, theories cannot qualify as laws if 

they are “based on impossible experiments or on data that can never be produced” (Zellner 

1988, p. 9). 

Sketching a rudimentary theory of the psychology of scientific discovery, Zellner (1988, pp. 9-

12) suggests that the discovery of laws proceeds in roughly three steps. In a first step, “the 

conscious and unconscious minds interact […] to produce ideas and combinations of ideas 

using as inputs at least (1) observed or known past data and experience, (2) a space of 

known theories, and (3) future knowable data and experience.” In a second step, “the 

conscious mind […] decides the general nature or design of an investigation.” This means 

that it selects a specific “phenomenon” from its pool of ideas or combinations of ideas, and 

that it develops “an appropriate theory or model that is capable of explaining the 

phenomenon under investigation and yielding predictions.” With respect to the development 

of that theory or model, Zellner remarks that it requires “hard work, a breadth of empirical 

and theoretical knowledge, consideration of many possible combinations of ideas, luck, and 

a subtle interaction between the conscious and unconscious minds.” He also argues that 

“focusing attention on sophisticatedly simple models and theories is worthwhile.” 

The third and final step is that of demonstrating that “the suggested model or theory actually 

does explain what it purports to explain by empirical investigations using appropriate data.” 

That demonstration requires the frequent use of new data to test not only the model or theory 

itself, but also its implications, such as predictions about as yet unobserved phenomena. 

Whenever new data is used to test the model or theory or its implications successfully, the 

degree of reasonable belief or confidence in the model or theory increases. The degree of 

reasonable belief in the model or theory corresponds to the posterior probability that can be 

assigned to that model or theory and computed using Bayes’ theorem: P(H⎥E) = P(E⎥H) ⋅ 

P(H) / P(E), where H is a proposition summarizing the model or theory and E an ‘evidential 

proposition’ referring to new data that can be used to test H. Zellner (1988, p. 16) says that 

“a theory can be termed a causal law” if the posterior probability that can be assigned to it is 

“very high, reflecting much outstanding and broad-ranging performance in explanation and 

prediction.” 
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Zellner can be read as responding to the question of how to decide about the relevance of 

variables and lags because causal laws may include well-confirmed theories about the 

strength of the parameters that can be included in a VAR model. If that strength happens to 

be among the phenomena that the conscious mind decides to investigate, the mind aims to 

develop an appropriate model or theory H that is capable of quantifying and explaining that 

strength. Once H is developed, it can be subjected to a Bayesian updating procedure in 

which a prior probability is assigned to H, in which the likelihood of E given H is evaluated, 

and in which data E is collected to compute the posterior probability of H in accordance with 

Bayes’ theorem. The posterior probability of H then serves as its prior probability when new 

data E is collected to test H (or any of its implications) again. Once the posterior probability of 

H is “very high”, H can be viewed as a causal law that supports decisions about the 

relevance of the variables and lags to be included in a VAR model: the greater the strength 

of a parameter, the more relevant its corresponding (lagged) variable. 

Zellner’s definition of “causality” combines with his rudimentary theory of the psychology of 

scientific discovery to imply an interesting response to the question of how to decide about 

the relevance of variables and lags. But problems pertain to the Bayesian updating 

procedure that marks the third of the three steps that scientific discovery takes according to 

his theory.6 And even if his theory were accurate, the question arises whether it doesn’t just 

make manifest how entirely difficult it is decide about the relevance of the variables and lags 

to be included in a VAR model. Zellner (1988, pp. 17-19) cites Friedman’s theory of the 

consumption function as a theory with a very high posterior probability. But the very high 

posterior probability of that theory may well be exceptional. 

 

5. Causal Bayes nets theory 

One final probability approach to causality is causal Bayes nets theory. Causal Bayes nets 

theory was first developed outside economics (substantially foreshadowed in Spohn 1980, 

and then developed in detail by Spirtes, Glymour, and Scheines 1993 and Pearl 2000), but 

has been applied in economics and econometrics soon after (Bessler and Lee 2002, 

Demiralp and Hoover 2003). Unlike the approaches of Suppes and Granger, causal Bayes 

nets theory is primarily interested in relations of causal dependence and analyzes causal 

relations irrespectively of any temporal ordering. It consequently focuses on relations of 

direct causal dependence more explicitly. 

																																																								
6  Cf. Norton (2011) for a particularly concise and thorough discussion of these problems. 
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At the center of causal Bayes nets theory7 is the notion of a directed, acyclic graph (DAG). A 

DAG is a tuple 〈→, V〉, where V is a non-empty finite set of pre-selected variables and → an 

acyclic relation on V: there are no variables X, …, Y ∈ V such that X → ... → Y and Y → X. A 

DAG is a causal graph if the arrow → can be interpreted as representing a relation of direct 

causal dependence between the variables in V. In order to understand the notion of direct 

causal dependence that is involved here, one needs to become acquainted with a bit of 

graph theoretical notation and the three axioms that determine the relation between causality 

and probability according to causal Bayes nets theory. 

Consider the graph theoretical notation first: In a DAG, X ∈ V is said to be 

- a parent of Y ∈ V if and only if X → Y (the set of parents of Y is denoted by pa(Y)). 

- a child of Y ∈ V if and only if Y is a parent of X. 

- an ancestor of Y ∈ V if and only if there are X, …, Y ∈ V such that X → … → Y (the 

set of ancestors of Y is denoted by an(Y)). 

- a descendant of Y ∈ V if and only if Y is an ancestor of X. 

- a non-descendant of Y ∈ V if and only X ≠ Y and X is not a descendant of Y (the set 

of non-descendants of Y is denoted by nd(Y)). 

Now turn to the three axioms (cf. Spirtes, Glymour, and Scheines 1993, pp. 29-32). Let 〈→, 

V〉 be a causal graph and P a probability measure over the power set of the sample space, 

and let ⊥P stand for probabilistic independence. Then P satisfies the so-called 

- Causal Markov Condition if and only if for all X ∈ V X ⊥P nd(X) − pa(X) / pa(X). 

- Causal Minimality Condition if and only if for all X ∈ V pa(X) is the smallest subset of 

variable set Y such that X ⊥P nd(X) − Y / Y. 

- Causal Faithfulness Condition if and only if for all subsets X, Y, Z of V X ⊥P Y / Z 

holds only if X ⊥P Y / Z is entailed by P’s satisfaction of the causal Markov and 

minimality conditions. 

Informally, the causal Markov condition says that the parents of X screen off X from all other 

non-descendants of X. The causal minimality condition says that P would no longer satisfy 

the causal Markov condition if any of the parents of X were excluded from pa(X); it requires 

that there be exactly one minimal set of parents of X that screens off X from all its other non-

descendants. Finally, the faithfulness condition says that there are no accidental conditional 

independencies: that all the conditional independencies that the causal Markov and 

minimality conditions make reference to reflect relations of causal dependence. 

																																																								
7  Much of the notation that the present section uses to describe causal Bayes nets theory is 
borrowed from Spohn (2012: section 14.8). 
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If P satisfies the causal Markov, minimality and faithfulness conditions and 〈→, V〉 is a causal 

graph, then P combines with 〈→, V〉 to form a causal Bayes net. As an example of a causal 

Bayes net, consider the following graph 

 

and imagine that you are worried about the competitiveness (X4) of your firm, and that you 

ponder about it in terms of productivity (X1), cost reduction (X2) and value creation (X3) and 

the probabilistic independencies that you think obtain between these variables. Then the 

causal Markov condition entails that X2 ⊥P X3 / X1 (that X2 and X3 are probabilistically 

independent, given their common cause X1), and that X4 ⊥P X1 / {X2, X3} (that X2 and X3 

screen off X4 from X1). The minimality condition entails that it is not the case that X2 ⊥P X3 

(otherwise {X1} would not be the minimal set given which X2 is independent of its non-

descendant X3, and vice versa), and that it is not the case that X4 ⊥P X2 / X3 or X4 ⊥P X3 / X2 

(X2 and X3 must make a difference, given the other). Finally, the faithfulness condition 

requires that probabilistic dependencies do not disappear when there are causal chains: that 

it be not the case that X4 ⊥P X1 / X2, X4 ⊥P X1 / X3, or X4 ⊥P X1. 

Spirtes, Glymour, and Scheines make it clear that they do not expect the three axioms to 

hold universally. They point out that the causal Markov condition might be violated in 

quantum physics, and that the causal faithfulness condition is violated on occasion (in the 

foregoing example it would be violated if X4 ⊥P X1 because the direct influences of X2 and X3 

cancel out each other). But they also say of the three axioms that “their importance – if not 

their truth – is evidenced by the fact that nearly every statistical model with a causal 

significance we have come upon in the social scientific literature satisfies all three” (Spirtes, 

Glymour, and Scheines 1993, p. 53). What they could have stated more clearly is that in 

order to satisfy the three axioms, a statistical model or set of variables needs to be causally 

sufficient: it needs to include each proximate common cause of any two variables in V; 

otherwise the probabilistic independencies will inadequately reflect relations of direct causal 

dependence. 

X4

X1

X3X2

Productivity

Value creation

Competitiveness

Cost reduction
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Spohn (2012, p. 501) points out that causal sufficiency might be difficult to achieve. The 

common causes of any two variables in V might go back as far as the big bang or simply slip 

off our radars, especially when they are hidden, i.e. non-measurable and causally relevant. 

Hoover (2001, p. 168) analyzes the repercussions of this difficulty for the case of economics. 

He argues that the faithfulness condition might be violated whenever expectations operate 

because expectations are hidden and take positions in causal relations that might fail to be 

reflected by conditional independencies. Hoover (2001, p. 167) argues, moreover, that 

macroeconomics poses “systematic threats to the Causal Markov Condition” because the 

“search for an unmeasured conditioning variable may end in the crossing of the micro/macro 

border before an appropriate conditioning variable could be located”. 

Spirtes, Glymour, and Scheines refrain from defining ‘causation’ explicitly and prefer to 

understand conditional independencies as reflecting relations of direct causal dependence. 

Spohn (2012, pp. 508-509), by contrast, proposes to define direct causal dependence in 

terms of the conditional independencies. He proposes, more specifically, to say that Y 

causally depends on X directly if and only if not Y ⊥P X / nd(Y) −	X, i.e. if and only if it is not 

the case that Y is probabilistically independent of X, given all the non-descendants of Y 

except X. He emphasizes that this definition is problematic because it relativizes the notion of 

direct causal dependence to that of a set V of pre-selected variables: change that set, and 

you will change the conditional independencies, and with them relations of direct causation. 

But he also suggests that the problem can be solved by de-relativizing the notion of direct 

causal dependence, i.e. by defining it for a “universal frame” or universal set of variables. 

 

6. Policy or prediction? 

Sections 3 and 4 called attention to the problem that economists cannot establish the claim 

that Xt Granger-causes Yt+1 unless they manage to include in a VAR model only the relevant 

number of variables and lags. Assume that despite this problem, they manage to establish 

the claim that Xt Granger-causes Yt+1. Can they now predict the value that Yt+1 is going to 

attain if they know the value of Xt? Can they predict, for instance, the value that GNP will 

attain in t+1 if they know the value that money takes in t? Most economists believe that the 

answer is positive. Granger (1969, p. 428) suggests that prediction is in fact the principal 

purpose of searching for relations of Granger causality. And in statistics, there are standard 

procedures for computing the expected value of Yt+1 when the values of the other variables 

and lags in the model are given. Economists might not be able to predict the exact value of 

Yt+1 (e.g. GNP), but they can state the probability with which Yt+1 can be expected to attain a 

specific value. 
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An entirely different question is whether economists can predict the value that Yt+1 would 

attain if they were to control Xt to a specific value. Assume again that they know that Xt 

(standing e.g. for money) Granger-causes Yt+1 (standing e.g. for GNP); does that imply that 

they know the value that Yt+1 would attain if they managed to set Xt to a specific value? Most 

economists agree that the answer is negative. In order to see that the answer is negative, 

consider again equations (1) and (2) of section 3. In order to be able to predict the value that 

Y is going to attain in t+1, one needs to condition equation (1) on the observations of X and Y 

in t and take the expectation of Yt+1: 

(3) E(Yt+1| yt, xt) = α11yt + α12xt + E(Ε1t+1| yt, xt). 

But in order to be able to predict the value that Yt+1 would attain if Xt were controlled to xt, 

one would need to condition equation (1) on the observations of X and Y in t and take the 

expectation of a counterfactual quantity. The expectation of that quantity is calculated in the 

same way as in (3). But in order to understand that quantity as counterfactual, one would 

need to understand the relation between Xt and Yt+1 as causal in the sense of the second 

tradition mentioned in the introduction: one would need to assume that there is an 

instrumental variable It (standing e.g. for the federal funds rate) that causes Xt, that causes 

Yt+1 only via Xt, and that isn’t caused by Ε1t+1; one would need to interpret equation (1) as a 

structural equation (and not as a regression equation) and Ε1t+1 as encompassing omitted 

variables that cause Yt+1 (and not as a regression error).8 

Thus knowledge that Xt Granger-causes Yt+1 is not sufficient for (does not imply) knowledge 

of the value that Yt+1 would take if Xt were controlled to xt. Might one perhaps say that 

knowledge that Xt Granger-causes Yt+1 is necessary for knowledge of the value that Yt+1 

would take if Xt were controlled to xt? Unfortunately, the answer is still negative. In order to 

see that the answer is negative, consider the following model of structural equations: 

(4)  yt+1 = θxt+1 + β11yt + β12xt + ν1t+1, 

(5)  xt+1 = γyt+1 + β21yt + β22xt + ν2t+1, 

where θ, γ and the βij represent parameters and the Νit+1 structural errors, i.e. errors 

encompassing omitted variables that are causally relevant. Solving the current values out of 

these equations yields the reduced form equations, which coincide with equations (1) and (2) 

such that α11 = (β11 + θβ21)/(1 − θγ), α12 = (β12 + θβ22)/(1 − θγ), α21 = (γβ11 + β21)/(1 − θγ), α22 = 

(γβ12 + β22)/(1 − θγ), ε1t = (ν1t + θν2t)/(1 − θγ), ε2t = (γν1t + θν2t)(1 − θγ). In order for Granger 

causality (or knowledge thereof) to qualify as a necessary condition of causality in the sense 

of the second tradition (or knowledge thereof), α12 in equation (1) would need to be unequal 

to zero. But Jacobs, Leamer, and Ward (1979, pp. 402-5) show (for a similar model) that 

																																																								
8  One would need to interpret Ε1t+1, more specifically, as encompassing omitted variables that 
adopt certain values and cause Yt+1 in t+1 or earlier. 
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there are cases in which α12 is equal to zero: cases in which e.g. β12 = −θβ22. And Hoover 

(2001, pp. 152-3) points out that these cases are not among the exotic ones that economists 

can neglect with a clear conscience.	

While the question relating to the value that Yt+1 is going to attain if the value of Xt is reported 

to be xt arises in contexts of forecasting, the question relating to the value that Yt+1 would 

attain if Xt were set to xt by intervention arises in contexts of policy analysis. It goes without 

saying that complementing knowledge of causality in the sense of the second tradition with 

knowledge of Granger causality is likely to be helpful in both contexts. And perhaps 

knowledge of causality in the sense of the second tradition yields better predictions than 

knowledge of Granger causality (cf. Pearl, 2000, p. 31). But the decisive point of the 

foregoing analysis is that policy analysis requires knowledge of causality in the sense of the 

second tradition. 

Many economists believe that policy analysis is the ultimate justification for the study of 

economics (cf. e.g. Hoover, 2001, p. 1); and that belief might explain why some of them hold 

that only the second tradition deals with causality in the strict sense of the term. Sargent 

(1977, p. 216), for instance, states that “Granger’s definition of a causal relation does not, in 

general, coincide with the economists’ usual definition of one: namely, a relation that is 

invariant to interventions in the form of imposed changes in the processes governing the 

causal variables.” In econometric textbook expositions of the concept of causality, one is 

likewise likely to find the observation that “Granger causality is not causality as it is usually 

understood” (Maddala and Lahiri, 2009, p. 390). 

 

7. Common effects and common causes 

The result of the preceding section has been that (knowledge of) Granger causality is neither 

a necessary nor sufficient condition of (knowledge of) causality in the sense of the second 

tradition. Does that result generalize to the claim that (knowledge of) causality in the sense of 

the second tradition can never be inferred from (knowledge of) probabilities? Hoover (2009, 

p. 501) defends a negative answer when suggesting that “some causal claims may be 

supported by facts about probability models that do not depend on assumptions about the 

truth of these very same causal claims.” The causal claims that he discusses include the 

claim that Z causally depends on both X and Y and the claim that X and Y causally depend 

on Z. The primary purpose of the present and final section is to point to the problems that are 

potentially inherent to attempts to infer these claims from probability models. 

It is, of course, impossible to observe the relations of causal dependence that might (or might 

not) obtain between X, Y, and Z directly. But one might be able to observe realizations of X, 
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Y and Z. And Hoover thinks that it is possible to specify an adequate probability model for 

these realizations independently of any assumptions about the causal relations that might (or 

might not) obtain between X, Y, and Z. In some of his work, Hoover (2001, pp. 214-7) 

advocates the application of LSE methodology to specify adequate probability models. LSE 

methodology operates by (i) specifying a deliberately overfitting general model, by (ii) 

subjecting the general model to a battery of diagnostic (or misspecification) tests (i.e. tests 

for normality of residuals, absence of autocorrelation, absence of heteroscedasticity and 

stability of coefficients), by (iii) testing for various restrictions (in particular, for the restriction 

that a set of coefficients is equal to the zero vector) in order to simplify the general model, 

and by (iv) subjecting the simplified model to a battery of diagnostic tests. If the simplified 

model passes these tests, LSE methodology continues by repeating steps (i) – (iv), i.e. by 

using the simplified model as a general model, by subjecting that model to a battery of 

diagnostic tests etc. Simplification is complete if any further simplification either fails any of 

the diagnostic tests or turns out to be statistically invalid as a restriction of the more general 

model. 

Let us assume that the application of LSE methodology has resulted in the following normal 

model of X, Y and Z (cf. Hoover, 2009, p. 502, notation modified): 

(X, Y, Z) ∼ N (µX, µY, µZ, σ2
X, σ2

Y, σ2
Z, ρXY, ρXZ, ρYZ), 

where µX, µY and µZ are the three means, σ2
X, σ2

Y and σ2
Z the three variances, and ρXY, ρXZ 

and ρYZ the three covariances or population correlations of the model. Hoover argues that the 

model supports the claim that Z causally depends on both X and Y if it satisfies the 

antecedent of the common effect principle, and that it supports the claim X and Y causally 

depend on Z if it satisfies the antecedent of the common cause principle. The two principles 

can be restated as follows (cf. Hoover 2009): 

- Principle of the Common Effect: If X and Y are probabilistically independent 

conditional on some set of variables (possibly the null set) excluding Z, but are 

probabilistically dependent conditional on Z, then Z causally depends on both X and 

Y (then Z forms an unshielded collider on the path XZY). 

- Principle of the Common Cause: If X and Y are probabilistically dependent conditional 

on some set of variables (possibly the null set) excluding Z, but are probabilistically 

independent conditional on Z, then X and Y causally depend on Z. 

Hoover argues, more specifically, that the normal model of X, Y and Z supports the claim that 

Z causally depends on both X and Y if ρXY = 0 and ρXY⎥Z ≠ 0, and that it supports the claim 

that X and Y causally depend on Z if ρXY ≠ 0 and ρXY⎥Z = 0. 

There are three problems that are potentially inherent to attempts to infer these claims from 

probability models. The first problem is that in practice, LSE methodology might be incapable 



	 15 

of implementation without data mining, which Mayo (1996, pp. 316-7) characterizes as data 

use for double duty, i.e. as the use of data to arrive at a claim (e.g. at the claim that Z 

causally depends on both X and Y, or that X and Y causally depend on Z) in such a way that 

the claim is constrained to satisfy some criteria (e.g. absence of misspecification), and that 

the same data is regarded as supplying evidence in support of the claim arrived at. Spanos 

(2000), however, argues that there are problematic and non-problematic cases of data 

mining. 

The second problem is that Hoover’s claim that an adequate probability model can be 

specified independently of any causal assumptions might not be accurate. If there are hidden 

variables (i.e. variables that cannot be measured and are known to be causally relevant), 

then these variables cannot be included in a deliberately overfitting general model, and then 

the model resulting from the application of LSE methodology cannot be said to be adequate.9 

But even if the probability model can be said to be adequate, there will be the third problem 

that neither principle obtains in cases in which ρXY ≠ 0 denotes a nonsense correlation like 

that between higher than average sea levels and higher than average bread prices (Sober, 

2001, p. 332), or that between cumulative rainfall in Scotland and inflation (Hendry, 1980, pp. 

17-20). It would be absurd to ask for the variable, which causally depends on X and Y, or for 

the variable, on which X and Y causally depend if X and Y were correlated in a way that 

doesn’t make any sense. 

Hoover (2003; 2009) responds to this problem by distinguishing stationary and non-

stationary time series that provide values to X and Y, and by arguing that non-stationary time 

series are not subject to the common cause principle unless they are co-integrated. Time 

series are non-stationary if they grow over time and do not have a fixed (or “stationary”) 

mean. And they are co-integrated if each of them is I(1), i.e. integrated of order 1, and if there 

is a linear combination of them that is I(0), i.e. integrated of order 0, where time series or 

linear combinations of them are I(d), i.e. integrated of order d, if they must be differentiated d 

times to be made stationary. 

Hoover’s response is convincing to the extent that it explains why neither the common effect 

principle nor the common cause principle obtains in cases in which ρXY ≠ 0 denotes a 

nonsense correlation: nonsense correlations are correlations between non-stationary time 

series that are not co-integrated.10 It is worth mentioning, however, that testing for co-

integration is not always easy. Johansen (1988) has developed an empirical procedure that 

can be applied to test for co-integration, but Cheung and Lai (1993) point to several finite-

sample shortcomings of that procedure; and Pagan (1995) points to difficulties in interpreting 
																																																								
9  Cf. Henschen (2018, section 5) for an elaboration of this second problem. 
10  For a more thorough and critical discussion of Hoover’s response, cf. Reiss (2015, chap. 8). 
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co-integration relationships that stem from the fact that Johansen’s procedure involves 

estimations of reduced form equations. 

 

References: 

Bessler, D. A. and S. Lee. (2002). “Money and Prices: U.S. Data 1869-1914 (a Study with 

Directed Graphs),” Empirical Economics 27(3), pp. 427-46. 

Cartwright, N. (1979). “Causal Laws and Effective Strateges”. Nous 13(4), pp. 419-437. 

Cartwright, N. (1999). The Dappled World. Cambridge: CUP. 

Cheung, Y.-W. and Lai, K. S. (1993). “Finite-Sample Sizes of Johansen’s Likelihood Ratio 

Tests for Cointegration.” Oxford Bulletin of Economics and Statistics 55, pp. 313-28. 

Demiralp, S. and K. D. Hoover. (2003) “Searching for the Causal Structure of a Vector 

Autoregression.” Oxford Bulletin of Economics and Statistics 65, pp. 745-767. 

Granger, C. W. J. (1969). “Investigating Causal Relations By Econometric Models and 

Cross-Spectrum Methods.” Econometrica 37(3), pp. 424-438. 

Granger, C. W. J. (1980). “Testing for Causality: A Personal Viewpoint.” Journal of Economic 

Dynamics and Control 2(4), pp. 329-352. 

Hendry, D. (1980). “Econometrics – Alchemy or Science?” Economica 47(188), pp. 387-406. 

Henschen, T. (2018). “The in-principle inconclusiveness of causal evidence in 

macroeconomics.” European Journal for Philosophy of Science 8, pp. 709-733. 

Hoover, K. D. (1993). “Causality and Temporal Order in Macroeconomics or Why Even 

Economists Don't Know How to Get Causes from Probabilities.” The British Journal for 

Philosophy of Science 44(4), pp. 693-710. 

Hoover, K. D. (2001). Causality in Macroeconomics, Cambridge: CUP. 

Hoover, D. (2003). “Nonstationary Time Series, Cointegration, and the Principle of Common 

Cause.” The British Journal for Philosophy of Science 54, 527-551. 

Hoover, K. D. (2009). “Probability and Structure in Econometric Models.” In C. Glymour et al 

(eds.), Logic, Methodology, and Philosophy of Science. London: College Publications, pp. 

497-513. 

Jacobs, R. L., Leamer, E. E., Ward, M. P. (1979). “Difficulties with Testing for Causation.” 

Economic Inquiry 17, pp. 401-413. 

Johansen, S. (1988). “Statistical Analysis of Cointegration Vectors.” Journal of Economic 

Dynamics and Control 12, pp. 231-254. 



	 17 

Maddala, G. S. and K. Lahiri (42009). Introduction to Econometrics. Chichester: Wiley & 

Sons. 

Mayo, D.G. (1996). Error and the growth of experimental knowledge. Chicago: University of 

Chicago Press. 

Norton, J. D. (2011). “Challenges to Bayesian Confirmation Theory.” In: P. S. 

Bandyopadhyay and M. R. Forster (eds.), Handbook of the Philosophy of Science. Vol. 7: 

Philosophy of Statistics. Amsterdam: Elsevier. 

Pagan, A. (1995). “Three Methodologies: An Update.” In L. Oxley et al. (eds.), Surveys in 

Econometrics. Oxford: Basil Blackwell, pp. 30-41. 

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge, MA: Cambridge 

University Press. 

Reiss, J. (2015). Causation, Evidence, and Inference. London: Routledge. 

Sargent, T. J. (1977). “Response to Gordon and Ando.” In C. A. Sims (ed.), New Methods in 

Business Cycle Research. Minneapolis: Federal Reserve Bank of Minneapolis. 

Sims, C. A. (1972). “Money, Income and Causality.” American Economic Review 62(4), pp. 

540-552. 

Sims, C. A. (1980a). “Macroeconomics and Reality.” Econometrica 48, pp. 1-48. 

Sims, C. A. (1980b), “Comparison of Interwar and Postwar Business Cycles: Monetarism 

Reconsidered”. The American Economic Review, Vol. 70, No. 2, pp. 250-257. 

Sober, E. (2001). “Venetian Sea Levels, British Bread Prices, and the Principle of the 

Common Cause.” The British Journal for the Philosophy of Science 52, pp. 331-346. 

Spanos, A. (2000). “Revisiting data mining: ‘hunting’ with or without a license.” Journal of 

Economic Methodology 7: 2, 231-264. 

Spirtes, P., Glymour, C., Scheines, R. (1993). Causation, Prediction and Search. New York: 

Springer. 

Spohn, W. (1980). “Stochastic Independence, Causal Independence, and Shieldability.” 

Journal of Philosophical Logic 9, pp. 73-99. 

Spohn, W. (1983). “Probabilistic causality: from Hume via Suppes to Granger.” In M. C. 

Galavotti and G. Gambetta (eds.), Causalità e modelli probabilistici. Bologna: Cooperativa 

Libraria Universitaria. 

Spohn, W. (2012). The Laws of Belief. Oxford: OUP. 

Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North-Holland. 



	 18 

Woodward, J. (2003). Making Things Happen: a Causal Theory of Explanation. Oxford: OUP. 

Zellner, A. (1979). “Causality and econometrics.” Carnegie-Rochester Conference Series on 

Public Policy. Elsevier, vol. 10(1), pp. 9-54. 

Zellner, A. (1988). “Causality and causal laws in economics.” Journal of Econometrics 39, pp. 

7-21. 


